新型橙黄色荧光粉 SrMoO₄:Pr³⁺,B³⁺,Li⁺的 制备及发光性能研究

赵 芬1 冯文林1,2 程雪羚1

(¹重庆理工大学光电信息学院,重庆 400054 ²中国科学院国际材料物理中心,辽宁 沈阳 110016)

摘要 采用高温固相法合成了 SrMoO₄: Pr³⁺, B³⁺, Li⁺新型橙黄色荧光材料, 并对其结构、形貌和发光性质进行了 研究。X 射线衍射(XRD)测量结果表明在 1200 °C 下制备的样品为纯相 SrMoO₄ 晶体。样品的形貌在扫描电镜 (SEM)显示下有不规则的外形但分散性良好。掺杂电荷补偿剂的荧光粉样品激发光谱由电荷转移跃迁(CT)带和 Pr³⁺离子的特征激发峰组成,主激发峰位于 448 nm(³H₄→³P₂)、473 nm(³H₄→³P₁)和 487 nm(³H₄→³P₀);其发射 光谱由一系列锐谱峰组成,分别位于 529 nm(³P₁→³H_{4,5})、545 nm,553 nm(³P₀→³H₅)、600 nm(¹D₂→³H₄)、617 nm(³P₀→³H₆)和 645 nm(³P₀→³F₂),最强发射峰为 645 nm。B³⁺和 Li⁺的掺入,能明显提高该荧光粉的激发与发 射峰的强度,最佳掺杂摩尔分数为 0.15% B³⁺和 0.35% Li⁺。

关键词 材料;高温固相法;电荷补偿;SrMoO4:Pr3+,B3+,Li+

中图分类号 O482.31 文献标识码 A doi: 10.3788/AOS201434.0116002

Study on Synthesis and Luminescent Properties of a Novel Orange SrMoO₄:Pr³⁺, B³⁺, Li⁺ Phosphor

Zhao Fen¹ Feng Wenlin^{1,2} Cheng Xueling¹

¹ School of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054, China ² International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China)

Abstract A novel orange SrMoO₄ : Pr^{3+} , B^{3+} , Li^+ phosphor is prepared via the high-temperature solid state reaction process, and its structure, morphology and luminescence properties are studied. The X-ray diffraction (XRD) patterns show that a pure SrMoO₄ crytal phase is obtained at 1200 °C. The morphology of the sample under scanning electron microscope (SEM) has good dispersity and irregular shapes. The excitation spectra are made up of charge transfer band and characteristic transitions of ${}^{3}H_{4} \rightarrow {}^{3}P_{2,1,0}$ (448, 473, 487 nm, respectively) of Pr^{3+} . The emission spectra of the SrMoO₄ : Pr^{3+} , B^{3+} , Li^+ phosphors are characterized by peaks at $529({}^{3}P_1 \rightarrow {}^{3}H_{4,5})$, $545({}^{3}P_0 \rightarrow {}^{3}H_5)$, $553({}^{3}P_0 \rightarrow {}^{3}H_5)$, $600({}^{1}D_2 \rightarrow {}^{3}H_4)$, $617({}^{3}P_0 \rightarrow {}^{3}H_6)$, 645 nm (${}^{3}P_0 \rightarrow {}^{3}F_2$). The strongest one appears at 645 nm. The intensity of excitation and emission peaks of SrMoO₄ : Pr^{3+} can be improved by doping B^{3+} and Li^+ . The optimum doping mole fractions are 0.15% B^{3+} and 0.35% Li^+ , respectively.

Key words materials; high-temperature solid-phase method; charge compensation; $SrMoO_4$: Pr^{3+} , B^{3+} , Li⁺ OCIS codes 160.2540; 160.4760; 300.2530

1 引 言

稀土掺杂的光学材料有着广泛的应用,从而引 起了许多研究人员的重视^[1-3]。其中,橙黄色荧光 粉对于 LED 的应用起着重要作用,它可以克服黄色 荧光粉与蓝光芯片封装后形成的白光因缺少橙色成 分导致的显色性差的问题。大量研究表明^[4-6],化

收稿日期: 2013-07-18; 收到修改稿日期: 2013-09-07

基金项目:国家自然科学基金(11104366)、教育部重点科技项目(212139)、重庆市自然科学基金(CSTC2011jjA50015) 作者简介:赵 芬(1988—),女,硕士研究生,主要从事光电材料与器件方面的研究。E-mail: 416644511@qq.com 导师简介:冯文林(1976—),男,博士,教授,主要从事光电材料与器件方面的研究。E-mail: wenlinfeng@126.com (通信联系人)

学性质稳定的白钨矿钼酸盐体系是一种性能优异的 发光基质材料。钼酸锶(SrMoO₄)具有很好的白钨 矿晶格点阵结构,钼原子处在四面体对称的晶格中, 由于其在发光材料及光电器件领域的广泛应用受到 越来越多的关注。目前,通过化学掺杂方法来实现 和提高荧光粉的发光性能已经成为一种新趋 势[7-8]。稀土氧化物材料在红外光谱区域的跃迁发 射可以用于光纤通信[9],而在可见光区的跃迁发射 被广泛应用于 LED、场致发射显示及光致发光装 置[10-11]。这些材料能够在能带结构中的禁带区域 形成较多氧空穴,这些空穴和自由电子不断复合,从 而导致氧化物基荧光粉发光[12-13]。而具有正交晶 系的 SrMoO₄:Pr³⁺ 荧光粉体的发光特性被认为是 三价 Pr³⁺ 替代部分二价 Sr²⁺ 时在晶格点阵中产生 了多余氧空穴,这些空穴与电子复合产生辐射跃迁。 另外,在掺杂替代中,杂质离子替代基质离子以后, 由于离子半径、电负性等不同[14],这种效应也可能 会更加明显。

本文采用高温固相法合成荧光粉 SrMoO₄: Pr³⁺, B³⁺, Li⁺材料。实验设计思想是:用 Pr³⁺、B³⁺、Li⁺ 替 代基质晶体中的 Sr²⁺离子晶位,与基质中 Sr²⁺离子半 径(\approx 0.112 nm^[15])和 Mo⁶⁺离子半径(\approx 0.062 nm^[15]) 相比,由于 B³⁺的离子半径(\approx 0.023 nm^[15])较小,通过 B³⁺的微掺杂,在反应中可降低晶格的紧密度,从而有 利于激活离子 Pr³⁺(离子半径约为 0.1013 nm^[15])进入 基质晶格。同时,Li⁺离子的掺入,起电荷补偿的作用, 可增强荧光粉的相对发光强度。即共掺杂 B³⁺,Li⁺的 作用是有利于 Pr³⁺激活中心替代 Sr²⁺晶格,增加活化 能和复合中心,从而增强辐射跃迁,有利于材料的发 光。通过 X 射线衍射(XRD)、扫描电子显微镜 (SEM)、激发与发射光谱的表征,对橙黄色荧光粉 SrMoO₄: Pr³⁺,B³⁺,Li⁺的结构、形貌和发光性能 进行了详细的研究。

2 实 验

2.1 样品制备

采用高温固相法制备 SrMoO₄:Pr³⁺,B³⁺,Li⁺ 橙黄色荧光粉。首先将原料(均为分析纯)SrCO₃, MoO₃,Pr₂O₃,B₂O₃,LiCO₃按一定化学计量比称 取,然后在玛瑙研钵里混合均匀并研磨 2 h,然后将 研磨好的反应物在高温炉里 550 ℃预煅烧 3 h,取出 研磨 1 h,并在 1200 ℃下煅烧 3 h,得到的产物充分 研磨后就得到了橙黄色荧光粉样品。

2.2 表征

采用岛津 XRD-6000 型 X 射线衍射仪(加速电 压为 40 kV,管电流为 30 mA,辐射源为 Cu 靶 Kα 辐射)测试样品的结构,对合成的发光粉体物相进行 测 试 分 析。用 扫 描 电 子 显 微 镜 (FE-SEM, HitachiSu-70 型)测试样品的形貌。用岛津 RF-5301 荧光分光光度计测量样品的激发光谱和发射 光谱,以 150 W 氙灯为激发光源,激发波长范围为 220~700 nm,扫描范围为 300~800 nm。所有样品 均在室温下测量。

3 结果与讨论

3.1 XRD 检测

图 1 为掺杂不同摩尔分数(下同)的 B^{3+} , Li^+ 粉体的 XRD 图谱,由 XRD 图谱表明掺杂 B^{3+} , Li^+ 的荧光粉体 $Sr_{0.998-x-y}$ MoO₄: 0. 2% Pr^{3+} , xB^{3+} , yLi^+ 与标准数据卡片(SrMoO₄ PDF \ddagger 08-0482)的 相应峰值均——对应,图中没有其他杂质峰存在,表 明用这种方法制备的产物具有高的纯相。衍射峰比 较尖锐,说明产物的结晶性良好,晶体结构并不受掺 杂 Pr^{3+} , B^{3+} , Li^+ 的影响。由衍射三强峰及谢乐方 程^[16-17]计算平均晶粒尺寸:

$$S = k\lambda / \beta \cos \theta, \qquad (1)$$

式中 *S* 是 SrMoO₄ 的平均晶粒尺寸, β 是衍射峰的半 峰全宽, θ 为衍射角,k 为常数取 0.89, λ (0.15406 nm) 为铜靶的 X 射线波长。根据三强峰(112)、(004)、 (204)和谢乐方程计算出的平均晶粒尺寸为 34 nm。

图 1 Sr_(0.998−x−y) MoO₄:0.2% Pr³⁺,

xB³⁺,yLi⁺的XRD图谱

Fig. 1 XRD patterns of $Sr_{(0.998-x-y)}MoO_4:0.2\%Pr^{3+}$, xB^{3+} , yLi^+

3.2 SEM 图

图 2 是荧光粉 Sr_{0.993} MoO₄:0.2% Pr³⁺, 0.15%

 B^{3+} ,0.35%Li⁺的场发射扫描电镜照片,从图中晶体 形貌可以看出,Sr_{0.993}MoO₄:0.2%Pr³⁺,0.15%B³⁺, 0.35%Li⁺样品的分散性较好,形状呈不规则状外 形,粉粒大小约为20~30 μ m。由于微观晶粒在高 温热反应时,会再结晶和聚合,因此,SEM 图片给出 的荧光粉粉粒尺寸一般比 XRD 和谢乐方程计算所 得的微观平均晶粒尺寸大^[18]。本实验制备的荧光 粉 粉 粒 大 小 与 目 前 商 用 荧 光 粉 荧 光 范 围 (1~

图 2 $Sr_{0.993}MoO_4:0.2\%Pr^{3+}$, 0.15%B³⁺,0.35%Li⁺样品的 SEM 图 Fig. 2 SEM image of $Sr_{0.993}MoO_4:0.2\%Pr^{3+}$, 0.15%B³⁺,0.35%Li⁺

100 µm)是一致的。

3.3 样品的激发与发射光谱

图 3 是 $Sr_{0.998-r-y}$ MoO₄: 0. 2% Pr³⁺, xB^{3+} , vLi^+ 掺杂不同浓度的 B³⁺和 Li⁺ 的激发光谱(λ_{em} = 645 nm)。A-F 依次分别对应于不同化学计量比的 B³⁺、Li⁺摩尔分数。激发谱包含了一个电荷转移带 (CT, 220~300 nm)和 Pr³⁺ 的三个特征激发跃迁, 分别对应于³H₄→³P₂(448 nm)、³H₄→³P₁(473 nm) $\pi^{3}H_{4}$ →³P₀(487 nm)的电子吸收。吸收带的变化 是由于材料能带结构的微小变化而引起的,光致激 发谱表明 Sr_{0.993} MoO₄:0.2% Pr³⁺, 0.15% B³⁺, 0.35%Li⁺的激发跃迁最强。原因可能是由于Li⁺ 离子掺杂倾向于产生的电荷补偿,而 B³⁺离子掺杂 替代后局域结构变形从而会产生点缺陷,这些缺陷 中心可捕获和释放载流子从而导致橙黄光的发射。 在能级系统中引入 B³⁺ 和 Li⁺ 离子, 可减少非辐射 中心的能量密度,确保更多的载流子能量补充给 Pr3+发光中心,这样就会有更少数量的载流子被猝 灭在非辐射中心,因此 B³⁺和 Li⁺的掺杂可导致 SrMoO₄:Pr³⁺的发射增强。

Fig. 3 Excitation and emission spectra of $Sr_{(0.998-x-y)}MoO_4: 0.2\% Pr^{3+}$, xB^{3+} , yLi^+

从图 3 可以看出, SrMoO₄: Pr³⁺, B³⁺, Li⁺的 较强橙黄色发射波长位于 550~600 nm 之间。监 测波长(λ_{ex})为 448 nm,其发射光谱由—系列锐谱峰 组成,分别位于 529 nm(³P₁→³H_{4,5})、545 nm,553 nm (³P₀→³H₅)、600 nm(¹D₂→³H₄)、617 nm(³P₀→³H₆) 和 645 nm(³P₀→³F₂),最强发射峰为 645 nm。

图 4 为掺杂 B^{3+} , Li^+ 相对应的光致发光光谱 (PL)的相对强度范围, 光致发光光谱的几个主要跃 迁带的变化趋势大体相同, 其相对发光强度由掺杂 B^{3+} 离子摩尔浓度从 $x=0.05\%\sim0.15\%$ —直增加 (对 Li^+ ,则是从 0.25%~0.35%), 到达光致发射谱 峰的最大强度(x=0.15%, y=0.35%)后,发光就 逐渐猝灭。由掺杂缺陷结构理论可知,少量掺杂可 一定程度上维持晶体完整性并在杂质格点上造成局 域结构畸变^[19],因此宇称选律放宽,从而导致 Pr^{3+} 离子的禁戒跃迁解除,发光强度变大。但掺杂过高 会更大程度改变 SrMoO₄ 的晶体结构,引起晶体结 构相变,以致进一步增加浓度有可能使得发光性质 发生变化。掺杂不同微量浓度 B^{3+} 和 Li^+ 的 SrMoO₄: Pr^{3+} , B^{3+} , Li^+ 系统可抑制非辐射过程从 而提高 Pr^{3+} 发光,电荷不平衡是由于三价 Pr^{3+} 和 B^{3+} 离子占据二价 Sr^{2+} 离子从而在 $SrMoO_4$ 晶格点 阵上失衡,Li⁺掺杂以后在一定程度上补偿了这种 不平衡,增强了荧光粉的发光性能。

此外,发光色度是表征发光材料特性的一个基本参数。图 5 为样品在蓝光区($\lambda_{em} = 448 \text{ nm}$)激发下的国际照明委员会(CIE)色度图。结果表明,掺杂 B³⁺,Li⁺的 Sr_{0.993}MoO₄:0.2%Pr³⁺,0.15%B³⁺,

0.35%Li⁺的色坐标为 x=0.52, y=0.44,与主波长在 587 nm 的橙光色坐标(x=0.500, y=0.415)接近,具有较高纯度的橙黄光。因此,该橙黄色荧光粉可作为新一代白光 LED 的潜在替代材料,能有效改善白光 LED 的显色性及使用性能。

图 4 B³⁺, Li⁺的不同掺杂量对发射谱的影响

- 图 5 Sr_{0.993} MoO₄:0.2%Pr³⁺, 0.15%B³⁺, 0.35%Li⁺的 CIE 色坐标图
- Fig. 5 CIE chromaticity coordinates of $Sr_{0.\,993}~MoO_4$: $0.\,2\,\%\,Pr^{3+}\,,\,0.\,15\,\%\,B^{3+}\,,\,0.\,35\,\%\,Li^+~phosphor$

4 结 论

采用高温固相法合成了 SrMoO₄: Pr³⁺, B³⁺, Li⁺ 新型橙黄色荧光材料,并对其结构、形貌和发光性质 进行了研究。制备的 SrMoO₄: Pr³⁺, B³⁺, Li⁺样品 具有纯的 SrMoO₄ 白钨矿结构,平均晶粒大小由 XRD 和谢乐方程确定为 34 nm。表面形貌呈不规则状但 分散性较好。样品的激发光谱在220~300 nm 波段 内有较强的电荷转移, Pr³⁺ 特征激发谱线分别位于 448 nm(³H₄ \rightarrow ³P₂)、473 nm(³H₄ \rightarrow ³P₁)和 487 nm (³H₄→³P₀);其发射光谱由一系列锐谱组成,分别位 于 529 nm(³P₁→³H_{4,5})、545 nm,553 nm(³P₀→³H₅)、 600 nm(¹D₂→³H₄)、617 nm(³P₀→³H₆)和 645 nm (³P₀→³F₂),最强发射峰为 645 nm。B³⁺和 Li⁺的掺 入,能提高 SrMoO₄:Pr³⁺的激发与发射峰的强度,最 佳掺杂摩尔分数分别为 0.15%B³⁺和0.35%Li⁺。 研究结果表明,SrMoO₄:Pr³⁺,B³⁺,Li⁺有潜力应 用于三基色白光 LED 中的橙黄色成分以改善其显 色指数。

参考文献

- Zhu Yadong, Zhou Pu, Zhang Hanwei, *et al.*. Analysis of maximum extractable power of 2 μm holmium-doped silica fiber lasers [J]. Acta Optica Sinica, 2013, 33(6): 0614004.
 朱亚东,周 朴,张汉伟,等. 2 μm 硅基掺钬光纤激光器极限功 率分析[J]. 光学学报, 2013, 33(6): 0614004.
- 2 Cui Zhiguang, Ye Renguang, Deng Degang, et al.. Optical properties of Eu²⁺-Dy³⁺ co-doped SrSiO₃ transparent glass ceramics [J]. Acta Optica Sinica, 2012, 32(2): 0216001. 崔志广,叶仁广,邓德刚,等. Eu²⁺/Dy³⁺共掺 SrSiO₃ 透明微晶 玻璃的光学性质[J]. 光学学报, 2012, 32(2): 0216001.
- 3 Yang Jingwei, Wang Li, Wu Xianyou, *et al.*. Numerical simulation and experimental study on thermal effects of 2.94 μm Er: YAG laser [J]. Acta Optica Sinica, 2012, 32(6): 0614002. 杨经纬, 王 礼, 吴先友, 等. 2.94 μm Er: YAG 激光热效应数 值模拟及实验研究[J]. 光学学报, 2012, 32(6): 0614002.
- 4 Feng Wenlin, Jin Ye, Wu Ying, *et al.*. Co-precipitation synthesis and photoluminescence properties of Ba_{1-x} MoO₄ : xEu³⁺ red phosphors [J]. Journal of Luminescence, 2013, 134: 614-617.
- 5 Yang Yuling, Li Xueming, Feng Wenlin, *et al.*. Synthesis and characteristic of CaMoO₄: Eu³⁺ red phosphor for W-LED by co-

precipitation [J]. Journal of Inorganic Materials, 2010, 25(10): 1015-1019.

杨玉玲,黎学明,冯文林,等. CaMoO4:Eu³⁺红色荧光粉化学共 沉淀合成与表征[J]. 无机材料学报,2010,25(10):1015-1019.

- 6 Li Zhaomei, Zhong Yingjuan, Gao Shaokang. Luminescent properties of red phosphors K₂Ba(MoO₄)₂: Eu³⁺ for white light emitting diodes [J]. Journal of Rare Earths, 2012, 30(10): 990-994.
- 7 Zheng Jiming, Xu Yan, Lü Feng, *et al.*. Preparation and luminescent properties of one-dimensional nanorods Sr₂SiO₄ : Eu²⁺ phosphors [J]. Acta Optica Sinica, 2011, 31 (11): 1116002.

郑继明,徐 琰,吕 锋,等. Sr₂SiO₄: Eu²⁺一维纳米棒的合成 及性能研究[J]. 光学学报, 2011, 31(11): 1116002.

8 Li Yali, Wang Chaonan, Song Guohua, et al.. Luminescent properties of red phosphors prepared by sol-gel and microwave radiation methods [J]. Acta Optica Sinica, 2011, 31 (3): 0316001.

李雅丽,王超男,宋国华,等.溶胶-凝胶法和微波辐射法制备红 色荧光粉及发光性质的研究[J].光学学报,2011,31(3): 0316001.

9 Zhang Long, Lin Fengying, Qi Changhong, et al.. Spectroscopic properties of Er³⁺ and Yb³⁺/Er³⁺-doped LaLiP₄O₁₂ glasses [J]. Acta Optica Sinica, 2001, 21(6): 757-761. 张 龙,林凤英,祁长鸿,等. Er³⁺ 单掺及 Yb³⁺/Er³⁺ 双掺 LaLiP₄O₁₂玻璃光谱性质研究[J]. 光学学报, 2001, 21(6):

757-761.
10 Cui Desheng, Guo Weiling, Cui Bifeng, et al.. Preparation and temperature-variation properties of high color rendering index LED [J]. Acta Optica Sinica, 2012, 32(1): 0123005.
崔德胜,郭伟玲,崔碧峰,等. 高显色白光 LED 的制备及其变温

特性[J]. 光学学报, 2012, 32(1): 0123005.

11 Feng Xiaohui, Meng Qingyu, Sun Jiangting, et al.. Luminescent

properties of Eu^{3+} doped $Gd_2 W_2 O_9$ and Gd_2 (WO_4)₃ nanophosphors [J]. Acta Physica Sinica, 2011, 60(3): 037806. 冯晓辉, 孟庆裕, 孙江亭, 等. Eu^{3+} 掺杂 $Gd_2 W_2 O_9$ 和 Gd_2 (WO_4)₃ 纳米荧光粉发光性质研究[J]. 物理学报, 2011, 60(3): 037806.

- 12 R Sahoo, S K Bhattacharya, R Debnath. A new type of charge compensating mechanism in Ca₅ (PO₄)₃ F:Eu³⁺ phosphor [J]. J Solid State Chemistry, 2003, 175(2): 218-225.
- 13 Philippe Boutingaud, Rachid Mahiou, Enrico Cavalli, et al.. Red luminescence induced by intervalence charge transfer in Pr³⁺doped compounds [J]. Journal of Luminescence, 2007, 122-123: 430-433.
- 14 Zheng Wenchen. Local rotation angle in the structural phase transition for the Mn^{2+} ion in a CsCaCl₃ crystal [J]. Physica B, 1995, 215(2-3): 255-259.
- 15 R C Weast. CRC Handbook of Chemistry and Physics [M]. Boca Raton: CRC Press, 1989. F187.
- 16 Feng Wenlin. Preparation and luminescent properties of green SrAl₂O₄: Eu²⁺ and blue SrAl₂O₄: Eu²⁺, Gd³⁺ phosphors [J]. Materials Letters, 2013, 110: 91-93.
- 17 Lei Fang, Yan Bing. Hydrothermal synthesis and luminescence of $CaMO_4$: RE^{3+} (M = W, Mo; RE = Eu, Tb) submicrophosphors [J]. J Solid State Chemistry, 2008, 181(4): 855 862.
- 18 Yang Yuling, Li Xueming, Feng Wenlin, et al.. Effect of surfactants on morphology and luminescent properties of CaMoO₄
 :Eu³⁺ red phosphors [J]. J Alloys and Compounds, 2011, 509 (3): 845-848.
- 19 Feng Wenlin, Zheng Wenchen, Liu Honggang. Crystal-Field Theory and Its Applications in Materials [M]. Chendu: Southwest Jiaotong University Press, 2011. 168, 175. 冯文林,郑文琛,刘虹刚. 晶体场理论及其在材料科学中的应用 [M]. 成都:西南交通大学出版社, 2011. 168, 175.

栏目编辑: 李志兰